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A parametric study of multiple steady states, their stability, onset of oscillatory instabi-
lity, and some supercritical unsteady regimes of convective flow of a Boussinesq fluid in
laterally heated rectangular cavities is presented. Cavities with four no-slip boundaries,
isothermal vertical and perfectly insulated horizontal boundaries are considered. Four
distinct branches of steady-state flows are found for this configuration. A complete
study of stability of each branch is performed for the aspect ratio A (length/height)
of the cavity varying continuously from 1 to 11 and for two fixed values of the
Prandtl number: Pr = 0 and Pr = 0.015. The results are represented as stability
diagrams showing the critical parameters (critical Grashof number and the frequency
at the onset of the oscillatory instability) corresponding to transitions from steady
to oscillatory states, appearance of multi-roll states, merging of multiple states and
backwards transitions from multi-roll to single-roll states. For better comparison
with the existing experimental data, an additional stability study for varying Prandtl
number (0.015 6 Pr 6 0.03) and fixed value of the aspect ratio A = 4 was carried out.
It was shown that the dependence of the critical Grashof number on the aspect ratio
and the Prandtl number is very complicated and a very detailed parametric study
is required to reproduce it correctly. Comparison with the available experimental
data for A = 4 shows that the results of a two-dimensional stability analysis are in
good agreement with the experimental results if the width ratio (width/height) of the
experimental container is sufficiently large. The study is carried out numerically with
the use of two independent numerical approaches based on the global Galerkin and
finite-volume methods.

1. Introduction
The motivation of the present work is manufacture of bulk semiconductor crystals.

Hurle (1966) showed that the convective oscillations caused striations in crystals
growing from melts. Accordingly, the problem of onset of oscillatory instability of
steady convective flows has been extensively studied. Recent studies have shown
that convection in the liquid phase strongly affects the processes of crystal growth
from melt (Müller & Ostrogorsky 1994). The simplest geometry among several crystal
growth technologies has the horizontal configuration of the Bridgman method (Dupret
& Van der Bogaert 1994; Monberg 1994), where the convective flow is induced by
the horizontal component of the temperature gradient. The simplest model of the
convective flow in the horizontal Bridgman crystal growth device is the flow in a
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laterally heated rectangular cavity (see Henry & Buffat 1998, and references therein).
This model has been intensively studied both experimentally and numerically, and
is used as a convenient benchmark problem for particular values of the aspect ratio
and the Prandtl number (GAMM Workshop: Roux 1990).

Recent experimental (Braunsfurth & Mullin 1996) and numerical (Gelfgat, Bar-
Yoseph & Yarin 1997, 1998a–c) studies showed that the transition from steady to
oscillatory state in these flows strongly depends on the Prandtl number and the aspect
ratio. However, most of the numerous numerical studies of this problem consider fixed
values of these parameters, which usually coincide with those used in the GAMM
benchmark (Roux 1990), A = 4 and Pr = 0 or 0.015. There are very few numerical
works where other values of the aspect ratio or Prandtl number were considered in
the context of crystal growth from melts. At the same time, there is no common
understanding of the dependence of the critical Grashof number on the aspect ratio
of the cavity and the Prandtl number. Gelfgat et al. (1997) considered cavities with
a stress-free upper boundary and obtained the dependence Grcr(A) for the whole
interval 1 6 A 6 10 and for the two fixed Prandtl number values, 0 and 0.015. It was
shown that the dependence Grcr(A) is non-monotonic and contains hysteresis loops,
such that stability properties of the flow at close values of the aspect ratio can be
surprisingly different. A similar study for the case of four no-slip boundaries seems to
be a minor addition. However, this case appears to be much more interesting, as well
as much more complicated, because of the existence of multiple stable steady-state
flows (Crespo del Arco, Pulicani & Randriamampianina 1989; Gelfgat et al. 1998
a, b). For A > 4, several (more than two) steady states can coexist simultaneously,
such that the resulting asymptotic state is determined not only by the governing
parameters but also by the initial conditions. To complete the stability diagram, the
stability boundaries should be calculated for each branch of multiple steady states
separately. The corresponding curves Grcr(A) have a complicated shape, such that
several hundred points have to be calculated to complete the stability diagram. This
is carried out in the present study for the interval 1 6 A 6 10, and for cavities with
four no-slip walls. To the best of our knowledge these stability diagrams are reported
here for the first time.

There exists an expectation that the case of Pr = 0, corresponding to infinite
thermal diffusivity, might be a plausible model for any Pr = O(10−2) which is
characteristic of semiconductor crystal growth from melts. If this were true, the
stability analysis could be simplified by excluding the convective thermal effects (at
Pr = 0, instability is purely hydrodynamic). A conclusion about similarity between
small and zero Prandtl numbers is usually made for a single value of the aspect
ratio and a single non-zero value of the Prandtl number (Pr = 0 and 0.015 for
A = 4 in Gelfgat & Tanasawa 1994; Henry & Buffat 1998). This, however, is not the
case, since, as is shown here, the case with Pr = 0 can never be used to model any
real semiconductor crystal growth process. It is shown that the occasional similarity,
corresponding to the mentioned values of Pr and A, disappears at Pr ≈ 0.023 and
does not exist at all if other values of the aspect ratio or other branches of steady-state
flows are considered. It is shown also that the end effects cannot be neglected when
oscillatory instability in long cavities is studied.

Recently, most studies on the oscillatory instability of convective flows considered
two-dimensional flow models only. Several three-dimensional numerical investiga-
tions involving small Prandtl numbers, used rather coarse grids. The finest three-
dimensional grid (120 × 60 × 60) was used by Babu & Korpela (1994), but even
then it was impossible to reproduce completely the experimental results of Pratte
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& Hart (1990). Convergence studies for the two-dimensional model (summarized in
Roux 1990; see also § 2.3) showed that higher-order methods and/or finer grids may
be needed for accurate unsteady calculations in the vicinity of the critical points.
Three-dimensional unsteady calculations are CPU-time consuming, and impractica-
ble for parametric studies. By contrast, two-dimensional parametric stability analysis
provides important information on the dependence of stability properties of the flow
on the governing parameters, which is necessary for future experiments and three-
dimensional numerical modelling. On the basis of the present results, it is possible to
foresee an existence of multiple many-roll steady states in three-dimensional laterally
heated cavities. Such multiple states have not been reported previously. It will also be
shown (see § 4.3) that, with some restrictions, the results of a two-dimensional study
are comparable with experimental findings.

Thermal boundary conditions, used in the present study, are chosen in accordance
with several experimental studies (see § 4.3), where the vertical boundaries were kept
at constant temperatures and the horizontal boundaries were reported to be good
thermal insulators. To compare with the experimental results obtained for different
Prandtl numbers, it was necessary to calculate the dependence Grcr(Pr). The aspect
ratio was fixed at A = 4, which is common for most of the experiments. It is
shown that the curve Grcr(Pr) contains several hysteresis loops in the narrow interval
0.023 < Pr < 0.027. This dependence provides a qualitative explanation of the recent
experimental results of Braunsfurth & Mullin (1996) and is reported here for the first
time.

The article is organized as follows. Section 2 contains the formulation of the
problem. Some relevant peculiarities of the numerical methods involved are presented
in § 3. Results and a discussion are presented in § 4. The conclusions are drawn in § 5.

2. Formulation of the problem
The convective flow of a Boussinesq fluid with kinematic viscosity ν∗ and thermal

diffusivity χ∗ in a cavity of length L∗ and height H∗ is considered. The vertical bound-
aries of the cavity have constant temperatures θ∗hot and θ∗cold, while the horizontal
ones are perfectly thermally insulated. All four boundaries are rigid (no-slip veloc-
ity conditions imposed). This set of boundary conditions corresponds to the Ra-Ra
benchmark case defined in Roux (1990). The flow is described by the momentum, con-
tinuity and energy equations in a Cartesian coordinate system (x∗, y∗). Using the scales
H∗, H∗2/ν∗, ν∗/H∗, ρ∗(ν∗/H∗)2 for length, time, velocity and pressure, respectively, and
θ = (θ∗ − θ∗cold)/(θ∗hot − θ∗cold) for non-dimensionalization of the temperature, the set
of Boussinesq equations for the non-dimensional velocity v = {vx, vy}, temperature θ
and pressure p in the rectangular domain 0 6 x 6 A, 0 6 y 6 1 is

∂v

∂t
+ (v · ∇)v = −∇p+ ∆v + Gr θ ey, (1)

∂θ

∂t
+ (v · ∇)θ =

1

Pr
∆θ, (2)

∇ · v = 0. (3)

Here A = L∗/H∗ is the aspect ratio of the cavity, Gr = g∗β∗(θ∗hot − θ∗cold)H∗3/ν∗2 the
Grashof number, Pr = ν∗/χ∗ the Prandtl number, g∗ acceleration due to gravity in
the y-direction, β∗ the thermal expansion coefficient, and ey the unit vector in the
vertical direction.
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The no-slip boundary conditions are imposed at all boundaries

vx = vy = 0 at x = 0, A, y = 0, 1, (4)

constant temperatures are prescribed at the vertical boundaries

θ = 1 at x = 0, θ = 0 at x = A, (5)

with zero heat flux through the horizontal boundaries

∂θ/∂y = 0 at y = 0, 1. (6)

3. Numerical procedures and test calculations
3.1. Numerical methods

The problem (1)–(6) is solved using two independent numerical approaches. The
Global Galerkin method was used for analysis of stability of steady flows and weakly
nonlinear analysis of slightly supercritical oscillatory states. Details on the basis
functions and numerical stability analysis can be found in Gelfgat & Tanasawa
(1994). More details on the weakly nonlinear asymptotic approximation of slightly
supercritical flows are given in Gelfgat, Bar-Yoseph & Solan (1996a).

Solution of the full unsteady problem is carried out by the finite-volume method,
based on the SIMPLE algorithm (Patankar & Spalding 1972), with second-order three
time-levels approximation of the time derivative (Janssen, Henkes & Hoogendoorn
1993). The finite-volume method is used for three main purposes: validation of the
stability results obtained by the Galerkin method, calculation of the supercritical
unsteady flows for large supercriticalities, and calculations in cases of subcritical
bifurcations. The finite-volume method provides conservative numerical schemes (for
conservation of mass, momentum, and heat), which is very important for the numerical
study in the vicinity of critical stability points. For this reason, it is chosen for the
present unsteady calculations.

Combination of two independent numerical approaches allows for verification of
the results obtained, especially in the cases where multiple steady solutions and
complicated stability diagrams occur.

3.2. Test calculations

Detailed test calculations are reported here for A = 4, which is the most common
case, and for A = 1, for which independent numerical data are available in literature.
Convergence of the steady states under the Galerkin method has already been
studied by Gelfgat & Tanasawa (1994). In the present paper, a convergence study for
the critical parameters (critical Grashof number and critical frequency) is reported.
Additional comparisons of the results obtained by the Galerkin and finite-volume
methods are presented in § 4.

The convergence study and the comparison with other numerical results for a
square cavity A = 1 are given in table 1, which shows that starting with 26× 26
functions (Nx×Ny = Mx×My = 26×26), two digits of both critical parameters (Grcr
and fcr = ωcr/2π) remain unchanged, whereas three digits remain unchanged when
36× 36 functions are used. Unfortunately, the available independent results (Esposito
& Behnia 1992; Bergman & Ball 1994) are obtained on rather coarse grids, so that
only a qualitative comparison is possible.

A more rigorous comparison can be effected for A = 4. In this case, two branches
of steady states exist for Pr = 0.015 and three branches for Pr = 0 (see figure 1 and
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Bergman & Esposito &
Ball (1994) Behnia (1992)

20×20 26×26 30×30 36×36 40×40 33×33 64×64
basis basis basis basis basis collocation finite-difference

functions functions functions functions functions points stretched grid

Pr = 0.005 Grcr × 10−6 1.528 1.635 1.633 1.640 1.640 1.858 < 2.0
fcr 1132 1165 1163 1165 1166 — 1360

Pr = 0.015 Grcr × 10−6 2.828 2.932 2.908 2.909 2.908 3.108 —
fcr 1364 1371 1369 1369 1369 — —

Table 1. Convergence study and comparison with other independent calculations for A = 1.

Winters
Ben Hadid & Pulicani et al. Le Quere (1988, 1990)
Roux (1990) (1990) (1990) 66× 24 Present result

32×18 40× 30 60× 20 60× 24 121× 41 40× 30 50× 20 Chebyshev biquadratic 200× 100
basis basis basis basis stretched FD Chebyshev pseudospectral finite uniform finite-

functions functions functions functions grid spectral modes modes elements volume grid

Pr = 0 Gr∗cr = Grcr/A 25520 25426 25417 25417 25000–25500 25000–25500 25350 25525 25000–27500
fcr 16.037 16.163 16.173 16.173 <16.34 16.31 16.08 16.207 1602–17.02

Pr = 0.015 Gr∗cr = Grcr/A 33095 33021 32996 32996 32500–33500 33300 — 33002 32500–33500
fcr 19.678 19.657 19.648 19.648 19.06–20.0 19.675 — 19.656 19.42–20.01

Table 2. Convergence study and comparison with other independent calculations for A = 4. Branch with a single convective circulation.
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Stream function Perturbation

(a)

(b)

(c)

Figure 1. Streamlines and the corresponding perturbations of different branches of steady-state
flows existing at Pr = 0, A = 4. (a) Gr = 1.0× 105. (b) Gr = 3.7× 105. (c) Gr = 3.9× 105.

§ 4). Depending on the governing parameters and the initial state, there can be three
different steady-state flows with one, two, or three primary circulations (figure 1). All
steady-state flows are centrally symmetric (namely, with respect to rotation through
180◦ about the centre of the cavity). For the considered boundary conditions (4)–
(6), this central symmetry is a common property of steady-state flows at subcritical
Grashof numbers. Note that all circulations rotate in a clockwise direction (figure 1).
The steady state with a primary convective circulation (with or without two secondary
rolls inside it; see figure 1) was the main objective of the investigation in the GAMM
benchmark (Roux 1990). The convergence of the critical parameters for this state,
and the comparison with the most accurate calculations, are shown in table 2 (note
that, for comparison with the results of the GAMM benchmark, the Grashof number
has to be redefined as Gr∗ = Gr/A). A sufficiently good result for this case has been
obtained already with 32× 18 basis functions, and is in good agreement with the four
most representative independent calculations (table 2). However, this particular case
is easy, since sufficiently good results are obtainable with coarse spatial discretization.
A relatively low value of the non-dimensional critical frequency (compare the values
of fcr in table 2 with those in tables 1 and 3) permits use of relatively large timesteps
when the instability is simulated, using straightforward time integration.

The case shown in table 2 was used for validation of the finite-volume solver. The
present results for Pr = 0 and 0.015 are shown in the last column of this table. It is
seen that a 200 × 100 uniform grid yields the correct intervals where both the critical
Grashof number and the critical frequency are located. It is known that grids stretched
near the boundaries provide better resolution for the considered case (Ben Hadid &
Roux 1990). For flow patterns with two and three primary circulations (figures 1b, c)
such stretching does not seem very useful. Accordingly, all calculations by the finite-
volume method were carried out with uniform grids only. On the other hand, the
Chebyshev polynomials used for the basis functions of the Galerkin method are known
to provide good resolution of the boundary layers and a high rate of convergence (Xin
& Le Quere 1995). Thus, good agreement between the two independent numerical
approaches guarantees good resolution of the boundary layers as well.

The second steady-state branch with two convective co-rotating circulations was
obtained by Crespo del Arco et al. (1989) and again by many other independent
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calculations. This steady-state flow does not exist at low Grashof number and appears
as a stable steady state when the Grashof number reaches a certain value Gr = Gr

(2)
l ,

which was interpreted by Skeldon, Riley & Cliffe (1996) as branching from a saddle-
node bifurcation point. The flow loses its stability at an upper value Gr = Gr(2)

u owing
to supercritical Hopf bifurcation (the result obtained in the present work; see § 4).
These two Gr values are compared with some other independent calculations in table
3 for Pr = 0 and 0.015. Calculation of the exact value of Gr(2)

l is difficult because
the two-circulation solution does not exist below this value of Gr. We checked it by
applying the arclength continuation technique and could not continue the branch of
this solution below Gr

(2)
l . We also verified that when Gr(2)

l is approached from above,

the dominant eigenvalue tends to zero. To determine the correct value of Gr(2)
l , the

Grashof number was varied within its fifth digit. Table 3 shows that four digits of
Gr

(2)
l remain unchanged starting with 50× 20 basis functions. The calculated value of

Gr
(2)
l is slightly below those obtained by Skeldon et al. for Pr = 0. This should be

so, since their calculations were not exact and relatively large increments were used
in finding the upper value of Gr, beyond which the stable steady-state solution with
two circulations does not exist. Gr(2)

u is larger than Gr
(2)
l , and the convergence of the

former is slower, but the two first digits remain unchanged starting with 60×20 basis
functions (table 3). For Pr = 0.015, only calculations for perfect thermal conducting
horizontal boundaries are available for comparison. It is seen that the Gr(2)

l and Gr(2)
u

calculated for different boundary conditions at Pr = 0.015 are close, which indicates
that the thermal boundary conditions imposed on the horizontal boundaries do not
strongly affect the stability of the discussed steady state. The result of Estivalezes,
Boisson & Kourta (1989) for Gr(2)

u and the corresponding critical frequency provides
aditional validation of the present result. Weak dependence of the critical numbers
on the thermal boundary conditions indicates that the instability is caused mainly by
the hydrodynamic mechanisms and is not strongly affected by the convective heat
transfer. In such cases, the onset of instability can be described by the limit of zero
Prandtl number (see § 4.3).

Another stable steady-state flow existing at A = 4 and Pr = 0, and consisting of
three convective co-rotating clockwise circulations (figure 1c), was calculated only
by Ben Hadid & Roux (1990). The stability interval of this flow is very narrow:
according to the present calculations, it becomes stable at Gr(3)

l ≈ 3.7 × 105 and
oscillatory-unstable at Gr(3)

u ≈ 4.05 × 105 owing to a supercritical Hopf bifurcation.
Convergence is practically achieved with 60× 20 basis functions. The calculated value
Gr

(3)
l is in good agreement with the above result of Ben Hadid & Roux (1990),

while the present value of Gr(3)
u is approximately half of theirs (their exact results are

Gr
(3)
l ≈ 3.64 × 105 and Gr(3)

u ≈ 8.0 × 105).
The values of the lower and upper critical Grashof numbers obtained in the present

work for the steady-state flows consisting of two and three rolls can be considered as
an extension of the GAMM benchmark. In addition, the isolines of the modulus of the
most unstable perturbations are included in figure 1. These isolines describe the distri-
bution of the average amplitude of slightly supercritical oscillations of the flow, which
can be used as an additional qualitative comparison of different numerical results.

4. Results and discussion
The main objective of the present analysis is to obtain stability diagrams in the

(Gr, A)-plane which show stability regions of all branches of the steady-state flows
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Pulicani
Ben Hadid et al. Le Garrec & Winters Estivalezes

& Roux (1990) Magnaud (1990) et al. (1989)
(1990) 40× 30 (1990) 30×12 80×40

50×20 60×20 70×30 80×30 90×20 121×41 Chebyshev 120×30 biquadratic uniform
basis basis basis basis basis stretched spectral uniform FE finite finite-

functions functions functions functions functions FD grid modes grid elements volume grid

Pr = 0

Gr
(2)
l × 10−5 0.97637 0.97640 0.97639 0.97639 0.97639 1.0 0.98 1.04 1.156

f
(2)
l 0 0 0 0 0
Gr(2)

u × 10−6 0.399320 0.394179 0.395041 0.395308 0.395307
fu(2)

u 102.8 106.5 107.1 107.2 107.2

Pr = 0.015

Gr
(2)
l × 10−6 0.12003 0.12003 0.12003 0.12003 0.12003 0.112∗ 0.115∗ 0.10∗

f
(2)
l 0 0 0 0 0
Gr(2)

u × 10−6 1.500 1.517 1.470 1.485 1.478 1.6∗
f(2)
u 179.3 183.4 179.9 181.1 180.4 182∗

∗Calculations for perfectly conducting horizontal boundaries.

Table 3. Lower and upper critical parameters for the steady state with two convective circulations (A = 4).
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found in the present work. The stability analysis was carried out separately for each
branch with one, two, three, and four primary convective rolls. The diagrams allow
us to understand which stable asymptotic states are possible for certain governing
parameters, and when a transition from one branch to another can be expected.
Additional attention is paid to the dependence of the critical parameters on the
Prandtl number and to their asymptotic behaviour at large values of the aspect ratio.

The appearance of a roll-type structure of the flow in long but finite cavities was
associated with the transverse-roll instability in the horizontal layer (see Wang &
Daniels 1994, and references therein). Drummond & Korpela (1987) assumed that a
roll-type structure of steady flows develops as a result of an imperfect bifurcation.
Our calculations for long cavities (A ∼ 10), however, show that such a structure can
develop with the continuous change of a single-roll steady-state flow with continuously
increasing Grashof number. This is similar to the appearance of Taylor vortices in
cylindrical annuli of finite length (Benjamin & Mullin 1981) or to that of vortex
breakdown in cylinder with a rotating lid (Gelfgat et al. 1996a). Another similarity
between our predictions and the above case of Taylor vortices is the simultaneous
coexistence of multiple steady-state flows differing by the number of convective
rolls (Taylor vortices). When the aspect ratio and Grashof number exceed certain
values, the pattern of the final steady state is determined not only by the governing
parameters, but also by the initial conditions (see below). It is also shown at which
points different steady-state branches merge, and how the initial conditions should be
defined to arrive at a flow pattern with a certain number of rolls.

4.1. Stability diagrams and patterns of flows at Pr = 0

In addition to the steady state flows (figure 1) with one, two, and three primary
circulations, a steady flow with four primary rolls was found for A > 5.5. The complete
stability diagram for Pr = 0 is shown in figure 2 and includes the dependence of the
critical Grashof number on the aspect ratio (figure 2a) and that of the frequency at
the onset of oscillations (critical frequency, figure 2b). Some characteristic patterns
of oscillatory flows are shown as insets in figure 2(b). The snapshots correspond to
time intervals equal to a quarter of the period of oscillations and are arranged in a
clockwise sequence. The curves Grcr(A) and ωcr(A) indicate several different modes
of the most unstable perturbation, which replace each other at points where the
Grcr(A) curves have breaks. The critical frequency (defined by the imaginary part of
the dominant eigenvalues) changes abruptly at these points.

Upper parts of the neutral curves (figure 2a) correspond to the onset of oscillatory
instability. The dashed regions indicate the areas where steady-state flows with a
broken central symmetry are stable. These non-symmetric flows appear as a result of
steady pitchfork bifurcation of the symmetric steady flows and become oscillatory-
unstable above the corresponding black symbols (figure 2a). The steady pitchfork
bifurcation takes place at the lower borders of the dashed regions indicated by
blank symbols. In the case of the one-, two-, and three-roll flows, this bifurcation is
supercritical, and the lower stability boundary of the non-symmetric flows coincides
with the corresponding curves for the symmetric flows. In the case of the four-roll
flows, the pitchfork bifurcation is subcritical and the stability regions of the symmetric
and non-symmetric flows overlap. Transitions from the symmetric to non-symmetric
steady-state flows are described in detail in Gelfgat et al. (1998c).

Unlike the stability boundary of the single-roll steady-state flows (the curve denoted
by open circles in figure 2a), the stability regions of the multi-roll flows are bounded
both from above and from below. Their upper boundary corresponds to the oscillatory
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Figure 2. Stability diagram for Pr = 0. ◦, flows with a single symmetric roll; •, flows with a
single non-symmetric roll; �, flows with two symmetric rolls; �, flows with two non-symmetric
rolls; 4, flows with three symmetric rolls; N, flows with three non-symmetric rolls; �, flows with
four symmetric rolls; �, flows with four non-symmetric rolls; ×, characteristic points discussed in
the text. (a) Dependence of the critical Grashof number on the aspect ratio. (b) Dependence of the
critical circular frequency on the aspect ratio.

instability of the steady-state flows, and the lower one, to a saddle-node bifurcation
from one steady-state flow to another, or to an oscillatory flow with a different
number of rolls.

Several stable steady-state flows can coexist in the areas where stability regions
overlap. The final asymptotic state in this case depends not only on the governing
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parameters but also on the initial state of the flow. An example of three different
steady-state flows which are stable at the same values of the governing parameters
corresponds to point M in figure 2(a). The corresponding flow patterns were reported
by Gelfgat et al. (1998a). The coexistence of these three solutions was also validated
by time-marching finite-volume calculations, for which the flows calculated by the
Galerkin method were used as an initial guess. For three different initial guesses, the
integration in time converged to the corresponding different steady states.

At low Grashof numbers, there exists only a unique single-cell steady-state flow.
Therefore, with decrease of the Grashof number the multi-roll flows have to trans-
form to a single-roll one. Moreover, there exist values of the aspect ratio at which
(with decrease of the Grashof number) the flows with n and (n + 1) rolls become
indistinguishable, and merge with each other and with the single-roll branch. Thus,
the single-roll and two-roll states merge at point J12 (corresponding to the aspect
ratio A12 = 5.43) in figure 2(a). Similarly, two-roll and three-roll states merge at point
J23 which corresponds to the aspect ratio A23 = 7.54.

Transition from a single-roll to multi-roll flows takes place as follows. For A < A12,
with slow increase of the Grashof number up to onset of the oscillatory instability, the
steady flow consists of a single primary convective roll. Conversely, a slow increase of
the Grashof number in the interval A12 < A < A23 leads to continuous development
of two weak circulations inside the primary convective roll of a single-roll steady state.
With still further increase of the Grashof number, these circulations grow, such that
the steady-state flows continuously transform into a two-roll flow (figure 1b). A similar
transition from a single-roll to a three-roll steady state happens in the interval A23 <
A < A34(A34 > 10 at Pr = 0). The described transitions are continuous, and are not
due to an imperfect bifurcation, as was interpreted by Drummond & Korpela (1987).

A computational route for obtaining a flow with a given number of rolls, according
to the above results, can be described as follows: for a two-roll steady-state flow
at Pr = 0, A = 4 and Gr = 2 × 105, start from an aspect ratio inside the interval
5.43 = A12 < A < A23 = 7.54 and slowly increase the Grashof number up to 2× 105.
The transition from a single-roll to a two-roll flow will then occur. Then, the aspect
ratio should be slowly reduced to A = 4. The flow will preserve its two-roll structure.
Steady states with other numbers of rolls can be obtained in a similar way. Note that
values of A12 and A23 depend on the Prandtl number (see § 4.2).

Slightly supercritical oscillatory states with two, three, and four primary rolls
correspond to points O1, O2 and O3 in the insets of figure 2(b). Comparison of the
patterns of the steady-state flows corresponding to the critical points, those of the
perturbations (figure 1), and the snapshots of the slightly supercritical oscillatory
states allows us to make an additional conclusion. As is seen in figure 1, in all these
cases the maximal values of the perturbations (which correspond to the maxima of
the oscillation amplitude) are located in the areas of relatively weak flows. In the
case of the single-roll state (figure 1a) the maxima are located on the periphery of
the primary convective roll. In the case of two and three rolls (figure 1b, c), the global
maxima are located between the primary rolls. This indicates that the oscillatory
instability is caused by a hydrodynamic interaction between the rolls. Note that for
the case Pr = 0 considered in this section, the temperature is not perturbed at all.
Hence, the instability is of purely hydrodynamic origin. As follows from the patterns
of the perturbations, the oscillations of the streamlines are most noticeable between
the primary rolls (see the insets in figure 2b) or outside a single primary roll. Similar
patterns of perturbations and slightly supercritical oscillatory flows (not reported
here) were also found for other values of the aspect ratio.
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4.2. Stability diagram and patterns of flows at Pr = 0.015

The stability diagram for Pr = 0.015, shown in figure 3, is more complicated than
that for Pr = 0, which indicates that convective heat transfer cannot be neglected for
this small value Prandtl number. The dependence of the critical Grashof number on
the aspect ratio for all four branches of the steady-state flows is shown in figure 3(a).
To represent it with more details, the neutral curves of the stability diagram are also
shown separately for the one- and two-roll flows in figure 3(b), and for the three- and
four-roll flows in figure 3(c). Merging of the neutral curves at low Grashof numbers
is shown in the inset of figure 3(a). Figure 3(d) shows the dependence of the critical
frequency on the aspect ratio and corresponds to the neutral curves shown in figure
3(a). Snapshots of the streamlines of the oscillatory flows are illustrated in the insets in
figure 3(b) and 3(c). Similarly to figure 2(b), the snapshots correspond to time intervals
equal to a quarter of the oscillation period and are plotted in a clockwise sequence.

The characteristic points where the mode of the dominant perturbation changes,
are denoted by lower case letters. This enables us to relate the curves Grcr(A) and
ωcr(A) in figures 3(c) and 3(d). Roman letters from A to I correspond to the flows
with three primary convective rolls, and italic letters from p to z correspond to those
with four.

Similarly to the case of Pr = 0, the upper parts of the neutral curves in figures
3(a) to 3(c) correspond to transition from steady to oscillatory flow. Most of these
transitions occur owing to Hopf bifurcation. Steady bifurcations (with ωcr = 0) were
found for the two-roll flows in the interval 4.9 6 A 6 5.7, and for the four-roll
flows in the interval 8.77 6 A 6 10 (branch of Grcr(A) between points y and z in
figure 3c). An integration in time was performed for several characteristic values
from these intervals. It was found that in the interval 4.9 6 A 6 5.7 the unstable
symmetric two-roll flows transform into symmetric three-roll ones. In the interval
8.77 6 A 6 10 the unstable symmetric four-roll flows transform into non-symmetric
oscillatory four-roll ones. These steady bifurcations were not studied in detail. It can
be interpreted that at Pr = 0.015 steady non-symmetric states are unstable, so that
the described steady bifurcations lead either to another branch of the symmetric flows
(in the interval 4.9 6 A 6 5.7) or to oscillatory non-symmetric ones (in the interval
8.77 6 A 6 10). Stable non-symmetric flows with one or three primary convective
rolls were not found. An additional study is needed to find out for which parameters
such non-symmetric flows are stable.

The lower branches of the neutral curves correspond to the saddle-node bifurcations
from multi-roll to single-roll flows. Points where stability curves of the different
branches merge are denoted as J12, J23 and J34. These points correspond to A12 = 5.45,
A23 = 7.5 and A34 = 10, respectively.

Comparison of figures 2 and 3 shows that stability properties of the flows with
small but finite Prandtl number (Pr = 0.015, figure 3) differ from those with zero
Prandtl number (figure 2). Qualitative differences can also be seen in the patterns
of the dominant perturbations (see also Gelfgat et al. 1998a, b). Dependence of the
critical parameters on the Prandtl number will be discussed in § 4.3. There we also
address some exceptional cases where a similarity between the onsets of the oscillatory
instability at zero and small Prandtl numbers was found.

Steady states with two circulations are unstable inside the shaded areas in figures
3(a) and 3(b). This area lies inside the stability region of these flows. To check this
unexpected result, unsteady calculations by the finite-volume method were carried
out for a fixed value A = 3.1. The Grashof number was varied from the region of
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stable two-roll steady-state flows below the shaded area (point S1 in figure 3b) up
to the unstable region above the upper neutral curve (point O4). The main purpose
of this numerical experiment was to check whether direct numerical simulation will
reproduce the same steady-state/oscillatory transitions, as was predicted by the linear
stability analysis. The calculations, based on a 200×100 uniform grid with timestep
1.0× 10−6, were carried out for the points S1, O1, O2, O3, S2 and O4 in figure 3(b).

The numerical experiment proceeded as follows. First, a two-roll steady state at
Gr = 7 × 105 (point S1 in figure 3b) was calculated. The steady solution, calculated
by the Galerkin method, was used as an initial guess. Then, the Grashof number was
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increased to Gr = 8.1 × 105, slightly above the lower boundary of the shaded area
(point O1 in figure 3b). The flow became oscillatory with circular frequency ω = 786,
which agrees with the result of the Galerkin method ωcr = 784 (point O1 in figure
3d). The frequency was determined using the self-sustained oscillations of the kinetic
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energy in time. When the Grashof number was further increased up to Gr = 1.5×106

(point O2 and the corresponding inset in figure 3b) the two-roll oscillatory flow
becomes unstable, and transforms into an oscillatory flow with a single roll. The
oscillatory flow preserves the single-roll structure as the Grashof number continues
to increase up to the upper boundary of the shaded area (point O3 in figure 3(b),
slightly below that boundary). If an oscillatory solution at Gr = 2×106 is taken as an
initial condition, and the Grashof number is further increased up to Gr = 2.3 × 106

(point S2 in figure 3b), which is inside the stability region of two-roll steady-state
flows, the oscillatory single-roll flow transforms into a steady state with two rolls.
Further increase of the Grashof number, beyond the upper boundary of the stability
region, leads to onset of oscillatory instability, owing to a subcritical Hopf bifurcation,
such that the unstable oscillations with two circulations transform into an oscillatory
single-roll state. This final oscillatory state, corresponding to Gr = 2.9× 106 (point O4

and the corresponding inset in figure 3b), is characterized by self-sustained oscillations
of the kinetic energy at the frequency ω = 3300.

The good agreement between the solution of the full unsteady problem and the
results of the linear stability analysis should be considered as an additional validation
of the latter. It should be emphasized that the two numerical techniques used here
complement each other. Thus, for example, an unsteady calculation inside and outside
the unstable shaded area (figure 3b) may be carried out only after this area has been
found via the stability analysis. Conversely, transition from a two-roll steady-state
flow to a single-roll oscillatory flow (points O3 and O4 in figure 3b) can be found only
by means of the completely unsteady calculation.

As was mentioned in the previous section, oscillations of multi-roll flows are most
noticeable between the primary convective rolls. A similar trend was found here.
A two-roll oscillatory state is illustrated for point O5 in figure 3(b). Three- and
four-roll oscillatory states are illustrated in figure 3(c) for points O6, O7. All these
steady/oscillatory transitions take place via a supercritical Hopf bifurcation.

4.3. Dependence of critical parameters on the Prandtl number and comparison with
experiments

Several experiments, in which the onset of oscillatory instability in similar systems
was studied, used the aspect ratio A = 4, with mercury (Pr ≈ 0.026–0.027: Hart &
Pratte 1990; Hung & Andereck 1990; Pratte & Hart 1990), gallium (Pr ≈ 0.017–
0.022: Braunsfurth & Mullin 1996), and indium–gallium–tin alloy (Pr ≈ 0.018–0.019:
Griaznov et al. 1989; Bojarevics, Gelfgat, Gorbunov 1992) as working liquids. The
width ratio W (width/height) of the experimental containers varied from 1 to 5.5.
Only flows with a single primary convective circulation were reported in all these
experiments.

For better comparison with the experimental results, the dependence of the critical
Grashof number on the Prandtl number was calculated for A = 4. The calculations
were carried out for steady states with one primary circulation only, and for the in-
terval 0.015 6 Pr 6 0.03. The calculated stability diagram and the experimental data,
available from literature, are shown in figure 4. The dependence Grcr(Pr) becomes
complicated when the Prandtl number exceeds 0.023 (figure 4a). There are three
hysteresis loops of steady/oscillatory/steady transitions within the narrow interval,
0.023 < Pr < 0.027. Such complicated behaviour of the neutral curve qualitatively
reproduces the experimental graph Grcr(Pr) of Braunsfurth & Mullin (1996) obtained
for liquid gallium (see inset in figure 4a). Compared with the experimental data, the
theoretically predicted interval is shifted towards larger values of Pr, and the upper
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value of the critical Gr is larger than the experimental one. The difference may be due
to strong three-dimensional effects (the width ratio in this experiment was W = 1.1),
as well as to the temperature dependence of the Prandtl number (see Braunsfurth &
Mullin 1996).

Experimental results should be compared with the lower branch of Grcr(Pr) in
figure 4(a). The corresponding comparison of the critical frequencies is shown in
the inset of figure 4(b). The comparison shows that the experimental values of the
critical Grashof number for the lower values of Pr(Pr = 0.018 and 0.019) agree
with the present two-dimensional calculations if the width ratio of the container is
large enough. Thus, in the experiments of Bojarevics et al. (1992) and Griaznov et
al. (1989) the critical Grashof numbers measured for W > 5 are very close to those
calculated here (figure 4a). In the experiments of Bojarevics et al. (1992) the width
ratio varied from W = 2.5 to W = 5.4, and it was concluded that as W increases,
the critical Gr decreases, and the critical ω increases. It is also seen from figure 4
that as the width ratio increases, the experimental values of Grcr and ωcr draw closer
to the critical curves of the two-dimensional model. This indicates that the present
two-dimensional study describes three-dimensional flows if the width ratio of the
experimental container is sufficiently large. This assumption is supported also by the
recent results of Gelfgat et al. (1998c), where experimental results of Pratte & Hart
(1990), obtained for the container with A = W = 8 and Pr = 0.026, were reproduced
by a two-dimensional numerical study.

As was mentioned above, the critical Grashof number, measured by Griaznov et al.
(1989) for W = 5.5, is very close to Grcr calculated here. However, the experimental
value of the critical frequency is about two times smaller than the present numerical
result (figures 4a). A possible interpretation of this is a period-doubling bifurcation
which may occur already at small supercriticalities.

The disagreement between the present two-dimensional numerical results and the
experimental results of Hart & Pratte (1990) and Hung & Andereck (1990) (figure
4b) may have two reasons. The first is the smallness of the width ratio (W = 1
and 2) corresponding to these experiments. According to the results of Bojarevics et
al. (1992), better agreement may be expected for width ratios beyond W = 5. The
second reason is the Prandtl number of mercury (Pr = 0.026) which falls inside the
hysteresis area (figure 4a). Since the shape of the neutral curve depends strongly on
the width ratio, it can be expected that the shape and location of the hysteresis loops
are strongly affected by the width of the experimental container. As was mentioned,
this may be a good reason for the disagreement between the shape of the present
neutral curve Grcr(Pr) and the experimental one of Braunsfurth & Mullin (1996) (the
width ratio in this experiment was W = 1.1).

It is known that, at A = 4, the onset of oscillatory instability of a single-roll flow is
similar at Pr = 0 and Pr = 0.015, as was concluded by Gelfgat & Tanasawa (1994)
after comparison of the patterns of the corresponding dominant perturbations. Be-
cause of this, the curve Grcr(Pr) shown in figure 4(a) can be continuously extrapolated
to Pr = 0. The similarity persists along the lower branch of the curve Grcr(Pr) up
to Pr ≈ 0.0266, where the hysteresis loop begins. However, starting with Pr ≈ 0.023
another perturbation pattern can be found at higher branches of the hysteresis loop.

Obviously, the location of the hysteresis loops of Grcr(Pr) and the values of Pr,
where modes of the dominant perturbations replace each other, depend on the aspect
ratio. Therefore, whether similarity in the onset of oscillatory instability at zero and a
certain small but finite Prandtl number exists should be checked for every particular
value of the aspect ratio and for every particular branch of the steady-state flows. For
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example, in the case A = 1, similarity between zero and very low finite Prandtl numbers
exists up to Pr ≈ 0.0067 (the corresponding stability diagram is not shown here).

4.4. Asymptotic behaviour at large aspect ratios

It was shown by Gelfgat et al. (1997) that in cavities with a stress-free upper boundary,
there is no asymptotic behaviour at large aspect ratios (corresponding to an infinite
fluid layer) up to A = 10, which means that, even at that value, flow in a finite cavity
does not approach that in an infinite layer. The same is true with a no-slip upper
boundary (see figures 2 and 3). However, some qualitative hints on the patterns and
stability properties of flows in very long cavities can be extrapolated from the results
obtained in the present work.

It is clear that as the aspect ratio increases, there exist stable steady-state flows with
still larger numbers of primary convective rolls. Comparison of the neutral curves
of steady-state flows with two, three and four rolls (figures 2(a) and 3(a)) shows a
certain similarity in the shape of the stability regions. It is very likely that similar
shapes exist for flows with five, six, and more primary rolls.

The patterns of the dominant perturbations corresponding to the oscillatory insta-
bility at A = 9 and 10 (not shown here) illustrate that the influence of the lateral
boundaries cannot be neglected even at such high values of A. On the other hand,
there is a certain similarity in the perturbation patterns of the stream function for
a three-roll steady state at A = 10 and for the four-roll state at A = 10 (not shown
here): two global maxima of the perturbations are located on the central roll in the
three-roll state, and very similar maxima on the two rolls closest to the centre of
the cavity in the four-roll one. This means that the rolls in the central part of the
cavity are similarly perturbed. At the same time, the perturbation is weaker on the
rolls located near the vertical walls. If this similarity persists for states with a larger
number of primary rolls, then this instability corresponds to the infinite-layer case.

5. Conclusions
The main results obtained in the present work are:
1. The existence of multiple (two and more) steady states of the convective flow

for A > 2 was shown and verified by two independent numerical approaches.
2. Regions of stability for each of the one-, two-, three-, and four-roll steady states

were calculated for the intervals 0 6 A 6 10 and 0 6 A 6 11 for the two fixed values
of the Prandtl number Pr = 0 and 0.015, respectively.

3. The neutral curve Grcr(Pr) corresponding to the single-roll steady state was
obtained for A = 4 and the interval 0.015 < Pr < 0.03. Comparison with the
experimental data (obtained for A = 4 and different Prandtl numbers) showed
that the considered two-dimensional model can describe the experimentally observed
instability onset if the width ratio of the experimental container is sufficiently large.

4. It was shown that the model with the neglected convective heat transfer (the case
Pr = 0) cannot be a plausible approximation for description of stability of convective
flows at small Prandtl numbers.

5. The stability analysis showed that the end effects cannot be neglected even for
rather long cavities (with A ∼ 10).

6. It was shown that, unlike the bifurcation to the transverse-roll flow in the
infinite fluid layer (Nagata & Busse 1983; Kuo & Korpela 1988), a roll-type structure
of convective flows in finite cavities can develop as a continuous change of the flow
pattern.
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7. Extrapolation of stability results to close values of the aspect ratio or Prandtl
number is not always possible because of the complicated shape of the neutral curves.

8. There exist numerous modes of the dominant perturbations which abruptly
replace each other when the governing parameters vary continuously. Therefore,
various patterns of the oscillatory states can be expected. A common property of all
slightly supercritical oscillatory states is strong oscillations between primary rolls and
weak oscillations of the rolls themselves.
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